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Blast loading is often described by means of high order functions, and step-
by-step time integration algorithms are commonly used to evaluate the
numerical solutions. The time step size for the Newmark method has to be very
small in order to integrate the high order loading accurately. Recently, a
complex time step formulation has been proposed to construct unconditionally
stable higher order accurate time step integration algorithms with controllable
numerical dissipation where loading with high order variation can be tackled
without di�culties. The responses at the end of a time step are obtained by
linearly combining the responses at various complex sub-step locations with
di�erent weighting factors. In this paper, the complex time step method is
extended to evaluate the responses within a time step. The required weighting
factors anywhere within a time step can be worked out systematically. Besides,
there are some locations within a time step with one order higher in accuracy.
A procedure is also proposed to evaluate the modi®ed excitation at various
complex sub-step locations. To verify the complex time step method, a single-
degree-of freedom system subject to blast loading described by a fourth order
polynomial is considered in detail. A multi-degree-of-freedom system is also
analyzed. Excellent performance over the Newmark method is noted. It is
possible to evaluate the responses due to blast loading by using just one time
step.

# 1999 Academic Press

1. INTRODUCTION

Blast loading is the result of an explosion that comes in the form of a shock
wave consisting of a high-pressure shock front from the centre of detonation. A
typical pressure±time history for a blast wave in free air is shown in Figure 1.
The shock front arrives at time ta and reaches its peak value. The pressure then
decays to the ambient value which de®nes the positive phase duration t. This is
followed by a negative phase duration where a reversal of the air particles results
in suction. The Friedlander equation

p�t� � ps 1ÿ t

t

h i
exp ÿ bt

t

� �
�1�

Journal of Sound and Vibration (1999) 223(1), 23±48
Article No. jsvi.1998.2135, available online at http://www.idealibrary.com on



24 T. C. FUNG AND S. K. CHOW

is often used to describe the decay of the pressure intensity using the exponential
function [1].
In some situations, the actual blast loading is approximated by assuming

linear decay for the positive phase and with the negative phase being
neglected. Such approximations neglect possible effects on the response by
the suction phase [2]. Bakri and Watson [3] made a comparative study on
the response of a slab subject to four different types of blast loading shown
in Figure 2. Each type of loading tries to approximate the actual pressure±
time history obtained in an experiment. Both Lines I and II assume linear
decay of the loading and ignore the negative phase. Line I uses the same
peak overpressure and positive time duration as the actual loading. On the
other hand, Line II uses the same peak overpressure but preserves the
impulse by adjusting the positive phase duration. Line III considers only the
actual positive phase of the loading and Line IV uses the full blast load in
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Figure 1. A typical pressure versus time curve for blast wave.
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Figure 2. Idealisation of pressure±time pro®le.
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both the positive and negative phases. The results showed that Line I over
predicted the slab response while Lines II and III, both having the same
impulse, gave similar responses lower than that of Line I. Line IV gave the
best prediction for the de¯ection±time history. These observations suggest
that the negative phase of blast pressure is important in order to predict
accurately the responses of blast loading on structures.
Overestimating the loading, such as considering only the positive phase of

the blast load, may be appropriate for defensive or design purposes since
uncertainties are already present in the loading parameters. This, however,
may not be the case for offensive purposes such as military target-analysis
[4]. In view of the need to obtain accurate prediction of response±time
history, it is of much interest to seek solution techniques suitable for blast
loading
Singhal and Larson [5] used a fourth order polynomial to describe the blast

wave and calculated the dynamic reduction factors of ¯exible panels. Both the
positive and negative phases of the blast load were considered and an analytical
closed form solution was obtained by Duhamel integrals. The results were then
compared with different time step integration schemes. In this paper, the
complex time step method is used to evaluate the responses. It is found that the
present method is particularly suitable for systems subject to loading with higher
order variation, such as blast loading. It is possible to evaluate the responses
accurately by using just one large time step.

1.1. ALGORITHMS FOR TIME-STEP INTEGRATION

In the analysis of structural response to dynamic loading (such as blast
loading), the structure is commonly modelled using the ®nite element method.
The resulting equations are then solved by time step integration methods to
obtain numerical solutions at discrete time points [6]. For a multi-degree-of-
freedom system, the equations of motion after spatial discretization using the
®nite element method can be written as

�M�f�u�t�g � �C�f _u�t�g � �K�fu�t�g � fF�t�g �2�
where [M], [C] and [K] are the mass, damping and stiffness matrices respectively,
{F(t)} is the applied load vector, {u(t)} is the unknown displacement vector and
dots denote differentiation with respect to time t. The initial conditions at t� 0
are {u(0)}� {u0)}, { _u(0)}� {v0}.
To solve equation (2) numerically using time step integration algorithms, it is

desirable for the algorithms (i) to possess numerical dissipation so as to damp
out the spurious high-frequency responses and (ii) to be unconditionally stable
so that time steps of any size can be used without introducing numerical
instability. The commonly used algorithms are the linear mutli-step algorithms
such as the central difference method, Trapezoidal rule, Newmark method,
Wilson-y method, HHT-a method, Houbolt method, Park method, WBZ-a,
method, Bossak method and Bazzi±Anderheggen method [7±9]. These
algorithms are unconditionally stable but only second-order accurate. Third and
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higher order accurate linear multi-step algorithms give more accurate numerical
results but they are conditionally stable only.
Fast and accurate algorithms are useful for dynamical design, analysis and

control of mechanical and structural systems. Higher-order accurate
algorithms give very accurate numerical results and are good for long-term
prediction of system responses and preservation of system invariant (such as
energy and momentum). With the higher order algorithms, larger steps in
time marching can be taken without compromising accuracy. As an
alternative to the h-type re®nement (decreasing time step), the higher-order
algorithms can be regarded as the p-type re®nement (increasing the order of
approximating polynomials). Peters and Izadpanah [10] pointed out that p-
version ®nite elements in time can be made competitive with conventional
time-marching algorithms, particularly if high accuracy is needed. More
discussions on the higher order accurate time step integration algorithms can
be found in references [11, 12].
Nowadays, the Newmark method is still very commonly used. However, it is

non-dissipative when second order accurate. Recently, Fung [13±15] proposed
the complex time step method based on the Newmark method to construct
unconditionally stable higher order accurate time step integration algorithms
with controllable numerical dissipation. The complex time step sub-stepping
procedure in Figure 3(a) is different from the linear multi-step procedure in
Figure 3(b). In the complex time step method, the numerical results at different
sub-step locations are evaluated independently and then combined linearly to
give higher order accurate results at the end of a time step. The sub-step
locations may be complex. The order of accuracy of an algorithm determines the
number of sub-steps in order to advance one time step. In general, (2nÿ 1 )-th
order accurate algorithms can be obtained by using n sub-steps. Furthermore,
independent evaluation of the results at each sub-step location also enable the
algorithm to be implemented on parallel computers easily so as to speed up the
computation time.
There are three types of algorithmic parameters in the complex time step

method: the sub-step locations bk , the weighting factors ak for combining the
results at the sub-step locations and the desirable ultimate spectral radius m.
Here the ultimate spectral radius controls the stability property and the

tn tntn+1 tn+1

(a) (b)

Figure 3. Time-stepping procedures: (a) complex time step method, (b) Newmark method.
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numerical dissipation. It has been shown that if ÿ1< mE 1, the resultant
algorithms are unconditionally stable for all n [14, 15]. The algorithms with
ÿ1< m< 0 are seldom used since they are not as accurate as those with
0EmE 1. By varying m, the algorithms can be damped in a controllable way. A
special case is when m� 1, the algorithms for various n are non-dissipative with
an order of accuracy increased from 2nÿ 1 to 2n. It has also been shown that in
order to maintain higher order accurate solutions, the excitation may need some
modi®cations.
Since the complex time step algorithms are higher order accurate and can

handle higher order excitation, it is particularly suitable for systems subject to
blast loading. A large time step can be used to integrate the blast loading
responses accurately. In particular, the responses at the end of the loading
duration can be computed with a single time step using a suf®ciently high order
accurate algorithm. On the other hand, for the unconditionally stable second
order accurate Newmark method, the time step size has to be kept very small in
order to integrate the blast loading responses accurately. Many time steps are
generally required.
The complex time step method gives accurate results at the end of a time step.

Very often, it is of interest to know the responses within a time step as well.
However, the evaluation of the responses within the time step by the present
complex time step method has not been discussed previously.

1.2. OUTLINE

In this paper, the complex time step method is re®ned to give responses
anywhere within a time step. The order of accuracy is shown to be only n in
general, rather than 2nÿ 1 as at the end of the time step. A similar observation
has been reported by Fung and Leung [16] for the higher order accurate time
discontinuous Galerkin method and the bi-discontinuous Galerkin method. The
procedure to evaluate the corresponding weighting factors a�k for any particular
location within a time step is given. It is also found that there are some locations
within a time step having an order of accuracy n� 1 (one order higher than
other locations in general).
In order to obtain accurate particular solutions, the excitation may need some

modi®cations [14, 15]. When the excitation is expressed as a power series in time
explicitly, the modi®cation can be done easily by scaling up the coef®cients.
However, most of the time the explicit form is not known and a reconstruction
of the polynomial may be required. The reconstruction and modi®cation are
investigated in this paper. A procedure is proposed so that the required
excitations at the complex sub-step locations can be evaluated from the
magnitudes of the excitation sampled at various locations within a time step
interval.
In section 5, the complex time step method is used to evaluate the responses

due to a high order blast loading described by a fourth order polynomial. This
blast load approximation has been adopted by Singhal and Larson [5] and
Singhal et al. [17] in evaluating ¯exible panel responses. In their paper, closed
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form solutions were used to compute the responses and to compare with the
Newmark method which was considered as the representative of time-stepping
schemes. In this paper, it is shown that a sixth order accurate complex time step
algorithm could predict the responses at the end of the blast loading duration
accurately by using just one time step. The results are even better than those
given by the Newmark method with 20 time steps. The responses within the
time-step are also constructed by using the present method. A seventh order
accurate algorithm which is fourth order accurate within a time step gives
accurate responses within the time-step.

2. NEWMARK METHOD

The modal decomposition method can be used to uncouple (2). It is well
known that the integration of the resulting system of uncoupled equations is
equivalent to that for the original system. In the following, a single-degree-of-
freedom system is considered. The governing equations are given by

u�t� � 2xo _u�t� � o2u�t� � f �t�, �3�
where x, o and f(t) are the damping ratio, undamped natural frequency of the
system and the forcing excitation, respectively.
Given initial conditions u(0)� u0 , _u(0)� v0 at t� 0 for (3), the approximate

numerical solutions un�1 and vn� 1 at t� tn� 1 can be obtained from un and vn at
t� tn by using the following recurrence equations for the Newmark method

un�1 � un � vnDt� anDt2�1ÿ 2b�=2� an�1Dt2b,
vn�1 � vn � anDt�1ÿ g� � an�1Dtg,

an � 2xovn � o2un � f �tn�,
an�1 � 2xovn�1 � o2un�1 � f �tn�1�,

�4�

where Dt� tt� 1ÿ tn is the time step size. The parameters b and g de®ne the
variation of acceleration over a time step and determine the stability and
accuracy characteristics of the method. A satisfactory selection of these
parameters is 2bege0�5. Two well-known selections give the constant average
acceleration method (b� 1/4, g� 1/2) and the linear acceleration method (b�
1/6, g� 1/2).
For comparison with the analytical solutions, the Newmark algorithm is cast

in the equivalent single-step two-stage form for the single-degree-of freedom
system as

un�1
vn�1

� �
� �ANM�Dt�� un

vn

� �
� �LNM�Dt�� f �tn�

f �tn�1�
� �

, �5�

where [ANM(Dt)] is the numerical ampli®cation matrix given by
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2�2bÿ g�xo3Dt3 � �2bÿ 1�o2Dt2 � 4gxoDt� 2

2� 4gxoDt� 2bo2Dt2
2
2�2bÿ g�x2o2Dt3 � �2gÿ 1�xoDt2 � Dt

2� 4gxoDt� 2bo2Dt2

ÿ�2bÿ g�o4Dt3 ÿ 2o2Dt
2� 4gxoDt� 2bo2Dt2

2
ÿ�2bÿ g�xo3Dt3 � �bÿ g�o2Dt2 � 2�gÿ 1�xoDt� 1

2� 4gxoDt� 2bo2Dt2

266664
377775

and

�LNM�Dt�� �

�1ÿ 2b�Dt2 � 2x�gÿ 2b�oDt3
2� 4gxoDt� 2bo2Dt2

2bDt2

2� 4gxoDt� 2bo2Dt2

2�1ÿ g�Dtÿ �gÿ 2b�o2Dt3

2� 4gxDt� 2bo2Dt2
2gDt

2� 4gxoDt� 2bo2Dt2

266664
377775:

Using the constant average acceleration method so that b� 1/4 and g� 1/2,
the Taylor series expansions of the entries in [ANM(Dt)] about Dt are

ANM�1, 1� � 1ÿ 1

2
o2Dt2 � 1

2
xo3Dt3 ÿ 1

8
�4x2 ÿ 1�o4Dt4 � 1

4
x�2x2 ÿ 1�o5Dt5 � . . . ,

ANM�1, 2� � Dtÿ xoDt2 � 1

4
�4x2 ÿ 1�o2Dt3 ÿ 1

2
x�2x2 ÿ 1�o3Dt4

� 1

16
�16x4 ÿ 12x2 � 1�o4Dt5 � . . . ,

ANM�2, 1� � ÿo2Dt� xo3Dt2 ÿ 1

4
�4x2 ÿ 1�o4Dt3 � 1

2
�2x2 ÿ 1�xo5Dt4

ÿ 1

16
�16x4 ÿ 12x2 � 1�o6Dt5 � . . . ,

ANM�2, 2� � 1ÿ 2xoDt� 1

2
�4x2 ÿ 1�o2Dt2 ÿ �2x2 ÿ 1�xo3Dt3

� 1

8
�16x4 ÿ 12x2 � 1�o4Dt4 ÿ 1

8
�16x4 ÿ 16x2 � 3�xo5Dt5 � . . . : �6�

The analytical ampli®cation matrix for (3) is

�A�t�� � eÿxoDt
cos�odt� � xo

od
sin�odt� 1

od
sin�odt�

o2

od
sin�odt� cos�odt� ÿ xo

od
sin�odt�

26664
37775, �7�

where od�o
�������������
1ÿ x2

p
is the damped vibration frequency. The Taylor series

expansions of the entries in [A(t)] about t are
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A�1, 1� � 1ÿ 1

2
o2t2 � 1

3
xo3t3 ÿ 1

24
�4x2 ÿ 1�o4t4 � 1

30
x�2x2 ÿ 1�o5t5 � . . . ,

A�1, 2� � tÿ xot2 � 1

6
�4x2 ÿ 1�o2t3 ÿ 1

6
x�2x2 ÿ 1�o3t4

� 1

120
�16x4 ÿ 12x2 � 1�o4t5 � . . . ,

A�2, 1� � ÿo2t� xo3t2 ÿ 1

6
�4x2 ÿ 1�o4t3 � 1

6
�2x2 ÿ 1�xo5t4

ÿ 1

120
�16x4 ÿ 12x2 � 1�o6t5 � . . . ,

A�2, 2� � 1ÿ 2xot� 1

2
�4x2 ÿ 1�o2t2 ÿ 2

3
�2x2 ÿ 1�xo3t3

� 1

24
�16x4 ÿ 12x2 � 1�o4t4 ÿ 1

60
�16x4 ÿ 16x2 � 3�xo5t5 � . . . : �8�

Equations (6) and (8) are useful in establishing the required conditions for
higher order accurate algorithms.

3. COMPLEX TIME STEP METHOD

Fung [13±15] proposed the complex time step method by constructing a
(2nÿ 1)-th order accurate numerical ampli®cation matrix [A2nÿ1(Dt)] by

�A2nÿ1�Dt�� �
Xn
j�0

aj�ANM�bjDt��, �9�

where aj and bj are the weighting factors and sub-step locations, respectively.
Comparing equations (6) and (8), the parameters b0 and a0 are chosen to be

b0 � 0, a0 � 1

2
�1� �ÿ1�n�m �10�

and a1, a2, . . . , an and b1, b2, . . . , bn are required to satisfy the following
equations Xn

j�1
aj b

k
j � dk for k � 1, . . . , 2nÿ 1, �11�

where dk� 2kÿ 1/k! and m is the desirable ultimate spectral radius.
It can be shown that b1, . . . , bn are the roots of the following nth degree

polynomial

xn � S1x
nÿ1 � S2x

nÿ2 � . . .� Snÿ1x� Sn � 0, �12�
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where

Sk � �ÿ1�k2kCn
k

�2nÿ 1ÿ k�!�n� �nÿ k�m�
�2nÿ 1�!�n� nm� and Cn

k �
n!

�nÿ k�!k!
: �13�

a1, a2, . . . , an can be determined from the ®rst n equations in (11) after
b1, . . . , bn are determined. The resultant algorithms are unconditionally stable if
ÿ1< mE 1. The order of accuracy is improved from 2nÿ 1 to 2n if m� 1.
However, this higher order accuracy is achieved at the end of the time step only.
In actual computation, the numerical ampli®cation matrices are not com-

puted. Instead, the complex responses Uj and Vj are computed and combined
as follows:

u1 �
Xn
j�0

ajUj and v1 �
Xn
j�0

ajVj , �14�

where Uj and Vj are responses at the sub-step locations bjDt computed using the
Newmark method in equations (4) and (5).

3.1. WEIGHTING PARAMETERS FOR RESPONSES WITHIN A TIME STEP

u1 and v1 in equation (14) are responses at the end of a time step only. In the
following, the responses at any time ZDt (0E ZE 1) within the time interval are
considered. Equivalently, a numerical ampli®cation matrix [As(ZDt)] at ZDt is to
be constructed from [ANM(bjDt)]. In other words, it is required to construct

�As�ZDt�� �
Xn
j�0

a�j �ANM�bjDt��, �15�

where b1, . . . , bn have been determined previously in equation (12) and
a�1, . . . , a

�
n would depend on Z in general.

By comparing the Taylor series expansions of equation (15) and [A(ZDt)], it
can be shown that the required conditions for an sth order accurate [As(ZDt)] areXn

j�0
a�j � 1,

Xn
j�1

a�j b
k
j � dkZk for k � 1, . . . , s �16, 17�

Since there are (n� 1) undetermined parameters (a�0, a
�
1, . . . , a

�
n), s can at least be

n. In other words, the responses within a time step can be nth order accurate in
general. In matrix notation, the weighting parameters a�j at any particular time
ZDt within a time interval can be obtained from

b1 b2 . . . bn
b21 b22 . . . b2n

..

. ..
. . .

. ..
.

bn1 bn2 . . . bnn

2666664

3777775
a�1
a�2

..

.

a�n

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

d1Z

d2Z2

..

.

dnZn

8>>>>><>>>>>:

9>>>>>=>>>>>;
�18�

and a�0=1ÿ a�1ÿ a�2 ÿ . . .ÿ a�n since b0� 0. Obviously, when Z� 1, a�j would be



32 T. C. FUNG AND S. K. CHOW

equal to those aj in equation (11) and the order of accuracy would be at least
2nÿ 1. It can be proved that a�j can be given explicitly as

a�j �
1

2

Xn
i�1

Xnÿi
k�0

2iSk b
nÿiÿzkÿ1
j

 !
Zi

i!

�bj ÿ b1� � � � �bj ÿ bjÿ1��bj ÿ bj�1� � � � �bj ÿ bn�
: �19�

If the responses at n regular intervals are of interest (i.e., Z� k/n for
k� 1, . . . , n), a�jk corresponding to (k/n)Dt can be put into a matrix form as

�a�� � �b�ÿ1�D��Q� �20�
where

�a�� �

a�11 a�12 . . . a�1n

a�21 a�22 . . . a�2n

..

. ..
. . .

. ..
.

a�n1 a�n2 . . . a�nn

26666664

37777775, �b� �
b1 b2 . . . bn

b21 b22 . . . b2n

..

. ..
. . .

. ..
.

bn1 bn2 . . . bnn

26666664

37777775,

�D� �

d1 0 . . . 0

0 d2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . dn

26666664

37777775 and �Q� �

1

n

� �
2

n

� �
. . .

nÿ 1

n

� �
1

1

n

� �2 2

n

� �2

. . .
nÿ 1

n

� �2

1

..

. ..
. . .

. ..
. ..

.

1

n

� �n
2

n

� �n

. . .
nÿ 1

n

� �n

1

266666666666664

377777777777775
:

Some typical values of of a�j for n� 2, 3 and 4 are shown in Tables 1±3.
Examining equations (18) and (19) reveals that a�j is at most an nth degree

polynomial of Z. Hence, the responses at other locations can in fact be obtained

TABLE 1

Weighting parameters for interpolation: third order (n� 2) �0� 0, ��0� 1ÿ��1ÿ��2
Z� 1/2 Z� 1

m� 0 Re(b�1), Re(b�2) 0�666666667 Re(a�1), Re(a�2) 0�312500000 0�250000000
Im(b�1), ÿIm(b�2) 0�471405208 Im(a�1), ÿIm(a�2) ÿ0�088388348 ÿ0�707106781

m� 1/2 Re(b�1), Re(b�2) 0�555555556 Re(a�1), Re(a�2) 0�343750000 0�125000000
Im(b�1), ÿIm(b�2) 0�368513866 Im(a�1), ÿIm(a�2) ÿ0�160177902 ÿ1�168356460

m� 1 Re(b�1), Re(b�2) 0�500000000 Re(a�1), Re(a�2) 0�375000000 0�000000000
Im(b�1), ÿIm(b�2) 0�288675135 Im(a�1), ÿIm(a�2) ÿ0�216506351 ÿ1�732050808
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TABLE 2

Weighting parameters for interpolation: fifth order (n� 3) �0� 0, ��0� 1ÿ��1ÿ��2ÿ��3
Z� 1/3 Z� 2/3 Z� 1

m� 0 b�1 0�549777659 a�1 0�323240754 0�681969268 2�514888929
Re(b�2), Re(b�3) 0�325111170 Re(a�2), Re(a�3) 0�180972216 ÿ0�100243893 ÿ1�007444464
Im(b�2), ÿIm(b�3) 0�369898649 Im(a�2), ÿIm(a�3) ÿ0�051298661 ÿ0�482451097 ÿ0�368253778

m� 1/2 b�1 0�480424464 a�1 0�329280683 0�935797197 4�117654848
Re(b�2), Re(b�3) 0�293121101 Re(a�2), Re(a�3) 0�182581881 ÿ0�273454154 ÿ1�683827424
Im(b�2), ÿIm(b�3) 0�314804051 Im(a�2), ÿIm(a�3) ÿ0�108165117 ÿ0�599415993 ÿ0�014149399

m� 1 b�1 0�430628846 a�1 0�318334440 1�164812864 6�158265977
Re(b�2), Re(b�3) 0�284685577 Re(a�2), Re(a�3) 0�192684632 ÿ0�434258284 ÿ2�579132989
Im(b�2), ÿIm(b�3) 0�271599851 Im(a�2), ÿIm(a�3) ÿ0�159315753 ÿ0�759055620 ÿ0�337708298
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TABLE 3

Weighting parameters for interpolation: seventh order (n� 4) �0� 0, ��0� 1ÿ��1ÿ��2ÿ��3ÿ��4
Z� 1/4 Z� 1/2 Z� 3/4 Z� 1

m� 0 Re(b�1), Re(b�2) 0�377327607 Re(a�1), Re(a�2) 0�221415691 0�326316246 0�899463708 0�600688568
Im(b�1), ÿIm(b�2) 0�123548834 Im(a�1), ÿIm(a�2) ÿ0�031819636 ÿ0�428147098 ÿ1�598641414 ÿ6�077528225
Re(b�3), Re(b�4) 0�194100965 Re(a�3), Re(a�4) 0�119404622 ÿ0�123191246 ÿ0�668018396 ÿ0�350688568
Im(b�3), ÿIm(b�4) 0�288364942 Im(a�3), ÿIm(a�4) ÿ0�049749168 ÿ0�339452973 0�111801925 1�419933060

m� 1/2 Re(b�1), Re(b�2) 0�341851489 Re(a�1), Re(a�2) 0�201472435 0�412942036 1�118352301 ÿ0�253820656
Im(b�1), ÿIm(b�2) 0�109060021 Im(a�1), ÿIm(a�2) ÿ0�071811480 ÿ0�546018650 ÿ2�394986060 ÿ10�049013892
Re(b�3), Re(b�4) 0�181958034 Re(a�3), Re(a�4) 0�130070533 ÿ0�233254536 ÿ0�841496833 0�378820656
Im(b�3), ÿIm(b�4) 0�255958435 Im(a�3), ÿIm(a�4) ÿ0�096215652 ÿ0�358374129 0�450817416 2�258593898

m� 1 Re(b�1), Re(b�2) 0�316867519 Re(a�1), Re(a�2) 0�164719866 1�485193026 0�435050896 1�143874647
Im(b�1), ÿIm(b�2) 0�094882025 Im(a�1), ÿIm(a�2) ÿ0�127757184 ÿ0�660494516 ÿ3�247492038 ÿ15�298158259
Re(b�3), Re(b�4) 0�183132481 Re(a�3), Re(a�4) 0�157545759 ÿ0�328943026 ÿ1�112785271 1�143874647
Im(b�3), ÿIm(b�4) 0�231325226 Im(a�3), ÿIm(a�4) ÿ0�137607209 ÿ0�405615877 0�795687159 3�452040791
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by interpolating the initial conditions and the n determined responses. The order
of accuracy of the interpolated responses is of order at least n in general.

3.2. LOCATIONS WITH ONE ORDER HIGHER IN ACCURACY

From equation (17), it can be seen that it may be possible to choose Z so that
an additional equation with k� n� 1 is satis®ed, i.e.,

�bn�11 bn�12 . . . bn�1n �

a�1
a�2

..

.

a�n

8>>>>><>>>>>:

9>>>>>=>>>>>;
� dn�1Zn�1: �21�

Using equation (18), equation (21) can be written as

�bn1 bn2 . . . bnn�

1 1 . . . 1

b1 b2 . . . bn

..

. ..
. . .

. ..
.

bnÿ11 bnÿ12 . . . bnÿ1n

2666664

3777775
ÿ1

d1Z

d2Z2

..

.

dnZn

8>>>>><>>>>>:

9>>>>>=>>>>>;
� dn�1Zn�1: �22�

Since b1, . . . , bn are roots of equation (12), equation (22) can be shown to be
equal to

�Sn Snÿ1 . . . S1�

d1Z

d2Z2

..

.

dnZn

8>>>>><>>>>>:

9>>>>>=>>>>>;
� ÿdn�1Zn�1: �23�

Therefore, the locations with one order higher in accuracy are given by the roots
of the following polynomial

dn�1Zn � dnS1Znÿ1 � . . .� d2Snÿ1Z� d1Sn � 0: �24�
The locations with one order higher in accuracy can therefore be found
systematically for given n. The accuracy of the responses at these locations is at
least n� l. The locations and the corresponding weighting factors for n� 2, 3
and 4 are as shown in Tables 4±6.

4. EVALUATION OF EXCITATION AT COMPLEX SUB-STEP LOCATIONS

The excitation force f (t) in equation (3) in general can be approximated by a
polynomial function or can be expanded into Taylor series at the beginning of a
time step Dt as
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f �t� � f �0� � f 0�0�t� 1

2
f 0 0�0�t2 � 1

3!
f 0 0 0�0�t3 � . . .� 1

n!
f �n��0�tn � . . .

for 0EtEDt:

�25�

If the truncated Taylor series is used to represent the excitation, the terms
retained should conform to the required accuracy. It has been shown that to
maintain the accuracy of the numerical solutions for a given mth order accurate
algorithm, only excitation terms from t0 to tmÿ1 are required.
In the complex time step method, it has been shown [14] that the given

excitation in the form

f �t� � f0 � f1t� f2t
2 � f3t

3 � f4t
4 � f5t

5 � f6t
6 ��f7t7 � . . . � f0 �

X
k�1

fkt
k �26�

has to be modi®ed to the form

�f�t� � f0 � f1t� f2t
2 � 3

2
f3t

3 � 3f4t
4 � 15

2
f5t

5 � 45

2
f6t

6 � 315

4
f7t

7 � . . .

� f0 �
X
k�1

fk
dk

tk
�27�

where dk are de®ned in equation (11).

TABLE 4

Locations and weighting factors with order of accuracy n� 1 within a time
step, where n� 2

n� 2z�������������}|�������������{ Re(a�1) Im(a�1)
m Z Re(a�2) ÿIm(a�2)

0 ± ± ±
0�5 0�666666667 0�333333333 ÿ0�402015126
1�0 0�500000000 0�375000000 ÿ0�216506351

TABLE 5

Locations and weighting factors with order of accuracy n� 1 within a time step, where n� 3

n� 3z�������������}|�������������{ a�1 Re(a�2) Im(a�2)
m Z Re(a�3) ÿIm(a�3)

0 0�400000000 0�346108927 0�166945536 ÿ0�136747359
0�5 0�333333333 0�329280683 0�182581881 ÿ0�108165117
0�5 0�800000000 1�770805424 ÿ0�705402712 ÿ0�576229233
1�0 0�276393202 0�326575082 0�198515858 ÿ0�041847130
1�0 0�723606798 1�624084090 ÿ0�673845444 ÿ0�750916276
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It is not convenient to express the forcing function as a power series as in
equation (26) and then modify the coef®cients accordingly as in equation (27)
before evaluating the modi®ed forcing excitation at the complex sub-step
location bjDt. In the following, a procedure is proposed to compute the forcing
excitation at the complex sub-step locations directly from the force magnitudes
sampled at discrete locations within the time step.
Figure 4 shows the magnitude of the forcing excitations fj at a particular time

tj� ZjDt. If the forcing function is to be approximated by a polynomial of degree
p, the required polynomial can be written as

f �Z� � f0 � a1Z� a2Z2 � � � � � apZp, �28�
where a1, . . . , ap are unknown coef®cients to be determined. If fj� f(Zj)
corresponds to the excitation at ZjDt, then

TABLE 6

Locations and weighting factors with order of accuracy n� 1 within a time step, where n� 4

n� 4z������������}|������������{ Re(a�1) Im(a�1) Re(a�3) Im(a�3)
m Z Re(a�2) ÿIm(a�2) Re(a�4) ÿIm(a�4)

0 0�226540920 0�230277199 ÿ0�002447173 0�115553873 ÿ0�012654284
0 0�630601937 0�607145801 ÿ0�832296999 ÿ0�417991451 ÿ0�223714146
0�5 0�198385342 0�118655703 0�001808796 0�230523905 0�006782061
0�5 0�553793169 ÿ0�386516761 ÿ0�292223635 0�564341262 ÿ0�729033505
0�5 0�866869108 ÿ0�693420760 1�225249906, 1�006822654 ÿ4�850881672
1�0 0�172673165 0�243876683 0�033161340 0�113266174 0�036901802
1�0 0�500000000 0�485193026 ÿ0�660494516 ÿ0�328943026 ÿ0�405615877
1�0 0�827326835 1�332821980 ÿ5�463507482 ÿ0�975679122 1�505995257

Force (f)

f(t)

f1
f2

fp–1 fp

f0

t0 t1

t

t2 tp–1 tp

Figure 4. Forcing excitation.
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f1

f2

..

.

fp

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

f0

f0

..

.

f0

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

Z1 Z21 . . . Zp1
Z2 Z22 . . . Zp2

..

. ..
. . .

. ..
.

Zp Z2p . . . Zpp

26666664

37777775
a1

a2

..

.

ap

8>>>>><>>>>>:

9>>>>>=>>>>>;
or fag � ��Z�ÿ1�ffg ÿ ff0g�:

�29�
From equation (27), the modi®ed excitation will then be in the form

�f�Z� � f0 � a1
d1

Z� a2
d2

Z2 � . . .� ap
dp

Zp: �30�

As a result, the modi®ed forcing excitation can be written as

�f�Z� � f0 � �Z Z2 . . . Zp��D�ÿ1��Z�ÿ1�ffg ÿ ff0g�: �31�
The excitations at the complex time step locations b1Dt, . . . , bnDt can be given

collectively as

�f�b1�
�f�b2�

..

.

�f�bn�

8>>>>><>>>>>:

9>>>>>=>>>>>;
� ff0g �

b1 b21 . . . bp1

b2 b22 . . . bp2

..

. ..
. . .

. ..
.

bn b2n . . . bpn

266666664

377777775

1

d1
0 . . . 0

0
1

d2
. . . 0

..

. ..
. . .

. ..
.

0 0 . . .
1

dp

26666666666664

37777777777775
��Z�ÿ1�ffg ÿ ff0g�:

�32�
It is interesting to note that if p� n, and regular sampling intervals are used

(i.e., Zk� k/n) then

��Z� � �Q�T �33�
and equation (32) becomes

f�fg � ff0g � �b�T�D�ÿ1�Q�ÿTffg � ff0g � �a��ÿT�ffg ÿ ff0g�: �34�

5. NUMERICAL EXAMPLE: FOURTH ORDER BLAST LOADING FUNCTION

Since the blast loading is generally described by higher order excitation
functions, higher order accurate algorithms can be used to compute the
responses more accurately even if a large time step is used. In the following, the
complex time step method is used to evaluate the responses due to a high order
blast loading function described in Figure 1.
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5.1. BLAST LOADING FUNCTION

Fansler and Schmidt [18] and Heap et al. [19] showed that the free-®eld
overpressures from gun blast based on experiments and ®eld tests can be
described by a fourth order blast loading function with a duration of Ts as

p�t� � �p

�
1ÿ tÿ ta

t

�
1ÿ a�tÿ ta�

t

� ��
1ÿ

�
a�tÿ ta�

t

�2�
, �35�

where �p, t, ta and t are de®ned in Figure 1. The positive phase duration t
generally varies between 56 10ÿ4 and 156 10ÿ4 s and the remaining parameters
are a� 0�2728 and Ts� t/a� 3�667t. Without loss of generality, �p can be
assumed to be unity and ta� 0.
Since the blast loading function is a fourth degree polynomial in t, Taylor

series expansion or a polynomial function up to the fourth degree can be used to
represent the blast loading function in equation (35) exactly. In this case, p� 4 in
equation (28) would be suf®cient. Within a time interval, ®ve forcing magnitudes
are evaluated at various locations and the excitations at the complex sub-step
locations are calculated from equation (32).

5.2. WEIGHTING PARAMETERS

Consider the equation of motion of a single-degree-of-freedom system in the
form

�u�t� � 2xo _u�t� � o2u�t� � p�t�, �36�
where x� 0 and o� 0�9 as in Singhal and Larson [5]. The blast loading p(t) is
de®ned in equation (35) with t� 156 10ÿ4 s. Since the blast loading is a fourth
order function, a ®fth or higher order accurate algorithm can be used to predict
the responses accurately.
In the present formulation, the ®rst step is to evaluate the algorithmic

parameters aj and bj . Consider a ®fth order accurate complex time step
algorithm with n� 3 and m� 0. The sub-stepping procedure is shown in
Figure 5(a). The required algorithmic parameters are

b0 � 0, a � 1

2
�37�

and b1, b2 and b3 are the roots of

b3 ÿ 6

5
b2 � 3

5
bÿ 2

15
� 0 �38�

and are given by

b1 � 1
5 �31=3� ÿ 1

15 �32=3� � 2
5 ,

b2 � ÿ� 110 �31=3� � 1
30 �32=3� � 2

5� � i 12
���
3
p �15 �31=3� � 1

15 �32=3��,

b3 � ÿ� 110 �31=3� � 1
30 �32=3� � 2

5� ÿ i 12
���
3
p �15 �31=3� � 1

15 �32=3��:

�39�
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Similarly, a1, a2 and a3 can be evaluated from

1 1 1

b1 b2 b3
b21 b22 b23

264
375 a1

a2
a3

8><>:
9>=>; �

1
2

1

1

8><>:
9>=>; �40�

and are given by

a1 � 1
6� 2

3 �31=3� � 2
3 �32=3�,

a2 � 1
6ÿ 1

3 �31=3� ÿ 1
3 �32=3� � i�13 �35=6� ÿ 31=6�,

a3 � 1
6ÿ 1

3 �31=3� ÿ 1
3 �32=3� ÿ i�13 �35=6� ÿ 31=6�:

�41�

5.3. RESPONSES AT THE END OF THE FIRST TIME STEP

The evaluated algorithmic parameters aj and bj for the ®fth order accurate
algorithm are now used to solve for the responses of the blast loading at the end
of a time step. Consider the ®rst time step of size Dt (0EDtETs). The
responses for the displacement Uj and the velocity Vj at each sub-step locations
bjDt are evaluated independently using the Newmark method in equation (4) at
bjDt. Note that since b2 and b3 are complex conjugates, the corresponding results
are also complex conjugates. Hence, only one of them has to be evaluated. If the
computational effort of complex number multiplication is assumed to be four
times that of real number multiplication, the computational effort of the present
®fth order algorithms would be ®ve times that of the Newmark method (since
one real time step b1Dt and one complex time step b2Dt or b3Dt are evaluated).
By linearly combining the sub-step responses using the weighting factors aj in

equation (41), the responses at the end of a chosen time step Dt are given by

u1

v1

� �
�
X3
k�0

ak
Uk

Vk

� �
, where U2 � �U3 and V2 � �V3: �42�

Im (t)

Re (t)
tn+1tn

0  t

3  t

2  t

1  t

(a)

Im (t)

Re (t)
tn+1tn

0  t

3  t

4  t

2  t

1  t

(b)

Figure 5. Sub-stepping schemes for higher order algorithms: (a) ®fth and sixth order algor-
ithms, (b) seventh order algorithm.
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Note that U0 and V0 correspond to the sub-step time at b0Dt� 0. These are the
initial conditions and therefore need not be evaluated, i.e., U0� u0� 0 and
V0� v0� 0.
For comparisons with the analytical solutions, the Taylor series expansion of

u1 about Dt is found to be

u1 � 1

2
Dt2 ÿ 1

6

a� 1

t
Dt3 ÿ 1

24

o2t2 � 2a2 ÿ 2a
t2

Dt4

� 1

120

6a3 � 6a2 � ao2t2 � o2t2

t3
Dt5

� 11

7200

ÿ24a3 � 2a2o2t2 � o4t4 ÿ 2ao2t2

t4
Dt6 � . . . :

�43�

Similarly, the Taylor series expansion of the analytical solution of equation (36)
is found to be

uexact � 1

2
Dt2 ÿ 1

6

a� 1

t
Dt3 ÿ 1

24

o2t2 � 2a2 ÿ 2a
t2

Dt4

� 1

120

6a3 � 6a2 � ao2t2 � o2t2

t3
Dt5

� 1

720

ÿ24a3 � 2a2o2t2 � o4t4 ÿ 2ao2t2

t4
Dt6 � . . . :

�44�

From the above, it can be veri®ed that the algorithm is ®fth order accurate for
the aj and bj values used and the truncation error is

Error�O�Dt6�� � 1

7200

ÿ24a3 � 2a2o2t2 � o4t4 ÿ 2ao2t2

t4
Dt6: �45�

The absolute magnitude of the error of course depends on the actual time step
size Dt. Table 7 shows the relative differences between the numerical results and
the analytical results for the displacement at the end of the ®rst time step for
various Dt. It can be seen that very good accuracy can be obtained when the
time step size is about half of the duration of the blast loading. The accuracy
starts to deteriorate when the time step size increases further. Therefore, to ®nd
the responses at t�Ts , two or more time steps should be used for the present
®fth order accurate algorithm. Alternatively, sixth or higher order accurate
algorithms could be used. The accuracy of the velocity response is not shown in
Table 7 since a very close agreement with the exact solutions is obtained
throughout the range of time steps under consideration. It can be seen from
Table 8 that for the velocity response, even if Dt�Ts , up to 4 signi®cant ®gures
coincide with the exact solution when the ®fth order complex time step method
is used.
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5.4. RESPONSES AT t�Ts

The calculation of the responses at the end of the loading duration Ts is also
carried out by using 2, 3 and 4 time steps (Dt�Ts/2, Dt�Ts/3 and Dt�Ts/4,
respectively) using the present ®fth order accurate algorithm. As shown in Table
8, the results approach to the analytical solutions.
The sixth and seventh order accurate algorithms are also used to evaluate the

responses with only one time step (Dt�Ts). The sixth order accurate algorithm
is computed using n� 3 and m� 1 while the seventh order accurate algorithm
uses n� 4 and m� 0. The sub-stepping procedure is illustrated in Figure 5. It can
be seen from Table 8 that the displacements calculated from the sixth and
seventh order accurate algorithms have 7 and 8 signi®cant ®gures respectively.
On the other hand, the Newmark method using 20 time steps produces

solutions with 2 signi®cant ®gures only. In order to achieve the same accuracy as
the sixth order accurate complex time step algorithm, about 1400 time steps are
required. For the velocity response, the higher order algorithms give good
predictions as well but not for the Newmark method with 20 time steps.
Table 8 also shows the computational effort relative to the Newmark method.

It can be seen that the computational efforts for the present algorithms are much
lower than the Newmark method for accurate solutions.

TABLE 7

Displacement for the first time step with various �t using the fifth order
accurate algorithm (n� 3, �� 0)

Dt/Ts Complex time step Exact Relative
(10±6 m) (10±6 m) difference

0 0 0 ±
0�05 0�034921613 0�034921619 ÿ1�72E-07
0�10 0�128481122 0�128481492 ÿ2�88E-06
0�15 0�264837012 0�264841229 ÿ1�59E-05
0�20 0�429587299 0�429610993 ÿ5�52E-05
0�25 0�609919953 0�610010339 ÿ1�48E-04
0�30 0�794717517 0�794987408 ÿ3�39E-04
0�35 0�974615903 0�975296467 ÿ6�98E-04
0�40 1�142017373 1�143533797 ÿ1�33E-03
0�45 1�291057715 1�294131941 ÿ2�38E-03
0�50 1�417527591 1�423312287 ÿ4�06E-03
0�55 1�518748082 1�528996019 ÿ6�70E-03
0�60 1�593400409 1�610673400 ÿ1�07E-02
0�65 1�641309847 1�669231421 ÿ1�67E-02
0�70 1�663183819 1�706739787 ÿ2�55E-02
0�75 1�660304182 1�726195264 ÿ3�82E-02
0�80 1�634173691 1�731224370 ÿ5�61E-02
0�85 1�586116659 1�725744417 ÿ8�09E-02
0�90 1�516833790 1�713582904 ÿ1�15E-01
0�95 1�425911215 1�698055262 ÿ1�60E-01
1�00 1�311283698 1�681500944 ÿ2�20E-01
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TABLE 8

Reuls at t�Ts by various methods and time steps

No. of Effort relative to Displacement Relative Velocity Relative
Method n m time step Newmark method (10±6 m) difference (10±5 m/s) difference

Exact ± ± ± ± 1�681500944 ± ÿ6�047288192 ±
Newmark method ± ± 20 20 1�698308634 1�00E-02 ÿ5�512455909 ÿ8�84E-02
Newmark method ± ± 1400 1400 1�681504378 2�04E-06 ÿ6�047179129 ÿ1�80E-05
Present 5th order 3 0 1 5 1�311283698 ÿ2�20E-01 ÿ6�047147435 ÿ2�33E-05
Present 5th order 3 0 2 10 1�669931627 ÿ6�88E-03 ÿ6�047284254 ÿ6�51E-07
Present 5th order 3 0 3 15 1�679977413 ÿ9�06E-04 ÿ6�047287590 ÿ9�95E-08
Present 5th order 3 0 4 20 1�681 139403 ÿ2�15E-04 ÿ6�047288076 ÿ1�92E-08
Present 6th order 3 1 1 5 1�681501386 2�63E-07 ÿ6�047276410 ÿ1�95E-06
Present 7th order 4 0 1 8 1�681500898 ÿ2�74E-08 ÿ6�047288192 0�00E�00
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5.5. RESPONSES WITHIN A TIME STEP

The complex time step method can be used to calculate the responses within a
time step after the responses at the sub-step locations are computed. For the ®fth
order accurate algorithm, the values of bj from equation (39) are substituted into
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Figure 6. (a) Interpolation of displacement. (b) Interpolation of velocity. ÐÐÐ, Exact 6th
order (2 time steps); - - - - -, 6th order; ± ± ±, 7th order.
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equation (18) or (19) to yield the required weighting factors for the response at
various ZDt where 0E ZE 1.
Figures 6(a) and (b) show the interpolated displacement and velocity

respectively for the sixth and seventh order accurate algorithms. The sixth order
accurate solution does not follow the exact solutions very well since the order of
accuracy within a time step is 3 only. As a result, it cannot capture the fourth
order load accurately. By using a seventh order accurate algorithm, close
agreement is obtained. Alternatively, good agreement is also obtained by using
smaller time steps for the sixth order accurate algorithm. The results from the
sixth order accurate algorithm with 2 time steps almost coincide with the exact
solutions within the time step. In Figures 6(a) and (b), the locations with better
accuracy within the time step are also indicated.

5.6. FREE VIBRATION RESPONSES

After the loading duration Ts , the system is set into free vibration with initial
conditions given by the responses at the end of Ts . The higher order accurate
algorithms have three advantages over the Newmark method. First, with more
accurate results obtained at the end of Ts , more accurate solutions are obtained
for the free vibration responses. Second, a larger time step can be used to
evaluate the free vibration. Third, the interpolation within each time step can be
carried out to trace the free vibration responses.
For comparison, in the present study, the initial conditions for the free

vibration evaluation for both the complex time step algorithms and the
Newmark method are taken from the analytical results. The time step for the
Newmark method is approximately one-tenth of the natural period (0�7 s) of the
system and the results are not very satisfactory as shown in Figure 7. If the time
step size is increased to approximately one-quarter of the natural period (1�75 s),
the Newmark method fails to give meaningful results. Since the present sixth
order accurate algorithm gives almost exact solutions at the end of the loading
period, it is chosen to compute the free vibration responses as well. It can be
seen from Figure 7 that using a time step of 1�75 s and with interpolation within
each time step, the present sixth order accurate algorithm is able to trace the
exact solutions closely for both displacement and veloctiy responses. The
Newmark method will need to use a smaller time step (such as 0�35 s) in order to
improve the solution's accuracy.

5.7. MULTI-DEGREE-OF-FREEDOM SYSTEMS

Consider a simply supported ¯exible panel subject to blast loading as
described in reference [17]. The dimensions of the panel were 0�914m by l�219m
and 0�032 cm thick. The elastic modulus and Poisson's ratio were assumed to be
68�956 106 kPa and 0�3, respectively. The panel was modelled as a simply
supported beam, 0�914m long and 25�4mm wide with uniformly distributed
blast loading on the beam. The beam was divided into 10 elements of equal
length. The displacement time history at the mid-span is shown in Figure 8.
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From Figure 8, it can be seen that the complex time step seventh order
algorithm can predict the blast loading responses accurately by using 3 time
steps for the loading duration. The interpolated displacements almost coincide
with the exact solutions. By applying the Newmark method, 20 time steps are
insuf®cient to give comparable results. To achieve comparable results,
approximately 300 time steps are required for the Newmark method. The
computational ef®ciency of the present complex time step method is clearly seen.
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Figure 7. (a) Free vibration displacement. (b) Free vibration velocity. ÐÐÐ, Exact;~, Newmark
(Dt� 0�35 s); 6, Newmark (Dt� 0�7 s); *, Newmark (Dt� 1�75 s); �, 6th order (Dt� 1�75 s).
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6. CONCLUSIONS

In this paper, the complex time step method is extended to evaluate responses
within a time step. The required weighting factors can be evaluated
systematically. It is also found that there are some locations within a time step
with one order higher in accuracy. To simplify the evaluation of excitation at the
complex sub-step locations, a procedure is established to compute the values
from the excitations sampled at discrete time locations within the time step.
The complex time step method is used to ®nd the responses of a single-degree-

of-freedom system subject to a fourth order blast loading. The present ®fth, sixth
and seventh order accurate algorithms are used to compute the results. It is
found that the use of a single time step is suf®cient for the sixth and higher order
accurate algorithms to evaluate the responses at the end of the loading.
Comparisons with the Newmark method show that the complex time step
method is more attractive in evaluating responses due to high order loading.
The interpolation within a time step is also performed and the responses are

accurate if the algorithm has fourth or higher order accuracy within the time
step. As a result, seventh or higher order accurate algorithms are used to
evaluate the responses with just one time step over the loading duration. In the
free vibration phase, the present higher order algorithms are able to give
accurate responses at the end as well as within each time step even when large
time steps are used.
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